

 ZTEST User documentation

1

 ZTEST User documentation

2

Contents
Changes in release V2.001 ... 6

Changes in release V1.001 ... 6

Original release and enhancements ... 6

Document update 2020-06-11 ... 6

Document update 2006-06-18 ... 7

The section on how to install the product has been updated. .. 7

Document and functional update 2006-06-23... 7

What is in the package? ... 7

More in detail: .. 7

Licensing ... 9

Disclaimer ... 9

Download and setup .. 10

URL for download ... 10

Extract the contents of the Zip file ... 10

Prepare for install on your system ... 11

Install product .. 11

TNAPI library ... 12

ZTEST menu .. 13

Functions for scripted testing .. 14

ZTSTGEN – Test data generation .. 15

What is this used for? ... 15

What it does: .. 15

What is required: .. 15

How to use the function ... 16

Details per field .. 19

When all criteria have been entered ... 22

Creating the program ... 23

If there are errors? ... 23

 ZTEST User documentation

3

What the code looks like .. 24

Declarations .. 24

Initial processing ... 25

Main processing ... 25

Finally ... 25

Resulting data ... 26

What if I have special requirements for fields – such as external procedures? 26

If you do manual changes to the generated program ... 27

Other potential issues .. 27

Final tip ... 27

ZCMPGEN – Compare versions of files ... 27

What is this used for? ... 27

What it does: .. 27

Merge file ... 27

“Miss files” .. 28

Difference file ... 28

What the function does not do: ... 28

What is the performance impact of using the tool? .. 28

How to use the function ... 29

First ... 29

Main screen .. 29

Select output files and source .. 30

Example: ... 31

Select unique access path .. 32

Select matching key fields .. 33

When you have defined your key fields… .. 33

Select fields to check for differences ... 34

Selecting another field from “new” file (option 2) .. 35

Generate source and compile .. 36

What has been created? .. 37

MRG0528 a view that combines ALL fields from both files where the keys match. 37

 ZTEST User documentation

4

MNE0528 records in OLD missing in NEW ... 37

MOL0528 records in NEW missing in OLD ... 37

MDI0528 records with differences in selected new key fields .. 37

Scripted testing... 38

What this does.. 38

How this works ... 38

Required setup ... 39

Recording a macro.. 40

Stop recording macro ... 41

Transfer macro(-s) to IFS .. 41

Convert recorded macro to script file .. 41

Why is this step necessary?.. 41

What happens? .. 41

Working with scripts... 43

Available options for the scripts ... 44

2 – Edit a script ... 44

3 – Copy a script ... 44

4 – Delete a script ... 44

5 – View a script ... 44

S – Submit a script .. 44

D – View database changes .. 44

V – View screen data .. 46

Function key F6 - Converting recorded macros to scripts ... 46

How TNAPI scripts are formatted .. 48

DATA Statement ... 48

SEND Statement ... 48

Available cursor control codes for the “DATA” statement .. 48

Available control codes for the SEND statement ... 49

This shows you ... 52

Updating the package .. 53

Finding the updates .. 53

 ZTEST User documentation

5

 ZTEST User documentation

6

ZTEST package
Changes in release V2.001
The package runs on release V7R3M0 and later releases.

All objects in save file are now owned by user QPGMR.

• All requirements for a license key are now removed. As is the menu option to enter

said key. The package is now provided free of charge and with the source code

provided.

• Changes in maximum sizes for macro conversion.

• Clarifications for file compare generation (display)

• All source code included in package.

Changes in release V1.001
• Test data generator:

o Changes in format of generated program

▪ Data now written from qualified data structure (handles case when

same field name exists in target and retrieved files)

▪ More readable format of generated code

o Retrieved files and fields are now validated online.

o Formula field is formatted after entry.

• Scripted tests

o Macro to Script conversion is amended and re-instated.

Original release and enhancements
Is date 2020-06-10 and has version number V1.000

Enhancements for further releases and update packages will be listed in future versions of

this document.

Document update 2020-06-11
In the first version of this document a portion of the documentation on script handling was

missing.

This has now been included. No changes in the software has occurred. This version of the

document is included in the download package and is also available for separate download

on the PTF page.

 ZTEST User documentation

7

Document update 2006-06-18

The section on how to install the product has been updated.

Document and functional update 2006-06-23
Some amendments to functions for file compare and test data generation have been

introduced.

Also, the function to convert ACS macros to TNAPI scripts has been temporarily disabled.

This function will be restored in V1.001 (full product load and PTF package) that will be

released later this summer. The reason for this are some issues with the encoding of the ACS

macro data when retrieved.

What is in the package?
This software package consists of Three functions designed to make it easier to test software

changes:

1. A test data generator that creates RPG programs that generate data in files based on

rules that you specify. The data is created by a randomization process, and you can

have as many records that you like created for you. And what you get will look and

feel like actual data.

2. A set of functions for scripted testing of online functions. This enables you to record

and save keystrokes as a script-macro file and submit it for execution in batch. All

displayed screens are saved for later analysis. As will the database changes that

occurred when the script was executed.

3. Functions to create views for comparison of data in two files. Thus, is frequently used

for the purpose of verifying that old and new program versions create the same data.

One view will always contain all old and new file fields joined by primary keys that

you provide. Other optional views show records that exist in one file but is missing in

the other. Lastly one view show records where keys match but specified fields have

different values.

Although all three functions are called as commands there is a menu available which also

contains management functions for application settings.

More in detail:

• Programs (RPG and CL) for:

o Setup and admin purpose (such as folders for the run scripts function)

o File compare functions.

o Macro/Script handling, conversion, running checking results.

o Test data generation

• One menu ZTEST with access to all functions in the package

 ZTEST User documentation

8

• Source files (suggested only – you may use other locations and file names):

o QFLDSRC – this is used (suggested) for your field level source statements for

test data generation.

o QTNSCRIPT – for storing scripts for running scripted tests.

o ZCOPYSRC – has control entries for created test data generator programs.

• Database sample files for file compare function.

o SAMPLEOLD “order file” with two records with matching keys for “new” file

one of which has data fields that differ. The other with same data. One record

which does not exist in “new” file.

o SAMPLENEW “order” file with one record that does not exist in “old” file.

• Display files for all functions

• Three commands:

o ZCMPGEN – runs function to create SQL views to compare datasets.

o ZRUNTNSCR – submits a test script.

o ZTSTGEN – runs function to create a test data generator program.

• Two data areas

o ZADMIN settings for folders (PC and IFS) for macros, journaling status and

more specifically for running scripted testing.

o ZCMPGEN – saves locations for generated source and objects.

• One binding directory ZTDGEN this is used when compiling test data generator

programs.

• One module ZRANDOM this has all the procedures needed by the created test data

generator program.

 ZTEST User documentation

9

Licensing
No, the product is provided totally free of charge for unlimited use. If you require personal

assistance, I will charge you for that as per standard pricelist.

But I would appreciate any suggestions for improvements or changes so that we together

can make the package even better.

Disclaimer
You take the responsibility for any consequences of using the product. It is all up to you –

not to me!

Fair don’t you think?

Also: Now that the source code is included I – at a time – had the idea to “beautify” the code

with copious more comments and such. As I have not quite had the time to do this I include

the running code as is. I have instead perform a lot of testing to verify that it all works as

designed.

(Not that for scripted testing you WILL need to download and install the TNAPI software

from another source!)

 ZTEST User documentation

10

Download and setup.

URL for download
Navigate to this URL:

http://konsult.karlpersaker.se/downloads/ztest-package/

And download the Zip file that contains the user documentation and the save file with the

program product.

Click on the green button and save the file on your system.

Extract the contents of the Zip file.
The Zip file contains two objects:

• The full user documentation (this document although the install section is available

as a separately downloadable document for convenience purposes)

• A save file from the IBM I system named ZTEST.SAVF. This contains the entire

program package with all required objects.

http://konsult.karlpersaker.se/downloads/ztest-package/

 ZTEST User documentation

11

Prepare for install on your system.

• Easiest way:

o Use the “Integrated file system” function in ACS.

o Navigate to the root and to QSYS.LIB.

o Navigate from there to a library on you IBM i where you can place your save

file.

o Use Ctrl + U to transfer the file to your IBM i library of choice.

o Restore the library ZTEST from the save file.

• FTP Option:

o Create a save file in a library on your system.

o Use FTP (binary transfer) to “put” the .savf file to the library where you

created the save file.

o Restore the library ZTEST from the save file.

Install product.
When the ZTEST library is restored from the save file the owner is set to QPGMR.

 ZTEST User documentation

12

TNAPI library
The TNAPI library is a separate download and install from the website of the developer (the

late Albert York).

TNAPI is the engine behind running the 5250 scripts in a batch environment.

The piece that is in the ZTEST library deal with conversion of recorded macros and managing

the results of the submitted runs.

And – yes: A portion of the proceeds for ZTEST are forwarded to Albert York!

You find this download here:

This is the file to download and save.

Expand this on your desktop system.

Then follow the instructions in the .TXT document.

 ZTEST User documentation

13

Application menu
ZTEST menu
Go to the application menu (GO ZTEST)

This is what it looks like:

The test data generator and the file compare functions are set up as commands while the

administrator functions and the functions for scripted testing are set up as program calls

from the menu.

 ZTEST User documentation

14

Configuration options
Functions for scripted testing
Use option 4 on the menu for this. “Settings for scripted tests”

This is what you will see:

• PC folder for macros

This is your way to tell the system about where you want the ACS macro recorder to

store your macros. The folder is created if it does not exist. You will have to tell ACS

(when recording) to place the macros here.

• IFS folder for macros

This tells the system where to look for macros when converting them to TNAPI

scripts. The folder is created if it does not exist.

• Database journaled

A simple yes-no question. Only if the database tables are journaled to the journal you

specify (name and library) is it possible for the function to view database changes for

a script to work.

• Script file

This is where the converted macros as well as any scripts you may enter manually are

stored. This is a simple source file. If it does not exist it is created.

 ZTEST User documentation

15

ZTSTGEN – Test data generation

What is this used for?
Having enough test data is difficult. Having good enough test data is even more difficult.

One solution might be to copy and possibly anonymize production data. But there is always a

risk that there is not enough variation in the production data to cover all cases – especially

when the changes performed includes introducing new values or new columns.

Another problem is when there is a new application (or part of) that means that new tables

are created. In this case there is no production data to copy.

What it does:
You pick a file and for each column in the file you describe how you want the data for that

column to be generated.

You also specify how many records you want to be created for the file when the generation

is run.

The function then – based on your input – generates and compiles the source for an RPG

program that when run creates the number of records you want and is based on the rules

you have set.

As for the rules and the options you have – we will come to that later.

What is required:
You will need:

• The ZTEST library in your library list

• An RPG compiler

• SQL Preprocessor

• And access to SEU (for certain options)

 ZTEST User documentation

16

How to use the function
From the ZTEST menu or from a command line call and prompt the ZTSTGEN command.

File name: A file in your library list. This is the target.

Source file: This is where the generated RPG code is stored.

Source member: The name you want for your source member. Also name of

compiled

 program.

Source library: The library for the generated source.

Retrieve previous: If this is set to “Y” the function will search for a previous definition

 that has been used for the file and fields used here. If that is fount

 the values used before will be placed on the detail screens.

Store definitions: Means that the selections you enter are stored in a file and can be

 retrieved when you generate next time.

Nothing strange here.

 ZTEST User documentation

17

A simple example:

I have a file named DEMOPFZ. For this I want to create a program DEMO01 and have the

source created in source file QDEMO in library ZTEST.

The entered data is validated so that the file exists, source file exists and so on.

Default is for the source member to be overwritten if it existed before.

Next you will be presented with the following screen that lists the fields in your file:

 ZTEST User documentation

18

You will need to:

1. Enter how many records that the generator program shall create when it is run.

2. Indicate (with an “X” or whatever nonblank character) the fields where you want to

specify criteria for how the data shall be generated.

After you have entered the criteria for all fields you will return to this screen. If you are

satisfied with what you have entered use the F10 key to generate and compile the source

code.

The generated program will not run at this point. You will have to call the program yourself.

Let us assume that we entered an “X” for each and every field above.

Also say we wanted a thousand records created when the program runs.

 ZTEST User documentation

19

Details per field
This screen is displayed for each field that has been selected from the list.

To the left is the “Generate as” selector. For each of the options there may be one or more

choices.

Default

This means that the values for the field always will be the same. Typically, blank for

character fields and zeros for numeric fields.

Random character

Each position in the character field will be filled with a character A through Z which is

generated in random. You can use this to verify that the size of the field (if used to the max)

fits on printouts and screens.

Numeric value

The field will get a value in the range from the from-value up to the to-value.

 ZTEST User documentation

20

Retrieved field

The program will draw the RRN from the field you specify and read that record. It will then

move the specified field value to your target field. Be aware that the field name should be

unique within the generated program. It will still work if the names are the same but only if

the data types and lengths are also the same.

The file name is checked so that it exists in your library list.

The field name is also checked so that it exists in the file you selected.

NOTE: While you can generate data for a target file in the QTEMP library you cannot use a

QTEMP file as the source for retrieved fields.

Select from value

The program draws a random number from 1 to 5 (or the number of values you have

specified) and moves that constant value to the target field.

So, what if you have more than five values to choose from for a field?

In this case the recommended solution is as follows:

• Create a table using SQL

You can use interactive SQL or the “run SQL script” function in ACS or any other way.

Create it with one field with the same type (and preferably length) as your target

field.

• Enter data interactively in SQL for as many values as you need.

• Use the retrieved field option to populate the field from randomly selected values

from the table. Now you can have as many values as you like.

Example payment conditions field.

CREATE TABLE MYLIB/PAYCOND (CODEVAL CHAR (3) NOT NULL WITH DEFAULT)

INSERT INTO PAYCOND (CODEVAL) VALUES(20),(30),(40),(50),(60),

(70),(80),(90)

 ZTEST User documentation

21

Current number

A sequence number is drawn and moved to the field. You can select any starting number and

increment that you like.

Date in range

The program calculates the number of days between the “from” date and the “to” date. It

then draws a random number that falls in that number of days, increments the from date

with that number and places the resulting date in your field. Enter the dates in YYYY-MM-DD

format.

Alternatively, if you have a field that is suitable as a start or end value – enter the field name

preceded by the ampersand “&” sign.

Note that the target for a date calculation can be any type of field! It can be a proper date

field but also a numeric or character field of sufficient length i.e., 8 digits for numeric fields

and 10 characters for character fields. This rule also applies to time fields (see below).

Time in range

This works in the same way as for dates. It only uses time values instead. Enter the times in

HH:MM: SS format.

Eval

Here you can enter a small snippet of own code. Assume that you want the field “Value” to

be calculated as Quantity * UnitPrice * (1- (DiscountPct/100)) you enter this as :
&QUANTITY * &UNITPRICE * (1 – (&DISCOUNTPCT/100))

This is the easiest way that can place your own code in the generated program. The

{fieldname =} part is assumed so all you need is code that defines or calculates a value.

For all field names in the formula that exist in the target file (the one that the data will be

written to) place a “&” sign before the field name. This will cause the system to precede the

field name with the qualifier for the output data structure.

 ZTEST User documentation

22

Source in

Here you specify a source member that contains a snippet of code that you want to use as

an /COPY member to calculate this field. You specify the source file and the member name

and if you enter an “X” or a “Y” in the EDIT field you can also create the source or edit

existing. Note that definition specifications are not allowed here – only fixed form or free

form procedure specifications.

One example of such source is this case:

I am creating a program that will generate X number of order lines for order headers that

already exist. The first line number within an order has to be 10 and then incremented with

10 for each new order line for the order number. How do I do that? Source in is the answer:

The source that I entered myself is like this:

DsOut.ordline=*zero;

exec sql select max(ordline) into :DsOut.ordline from ordline where

orderno = :DsOut.orderno;

DsOut.ordline+=10;

Note that all field names that exist in the target file need to be qualified. This is because they

are defined in a qualified data structure “DsOut”. If you do not qualify the field names, the

compile will fail.

Meaning that I first set the result field to zero.

The I use SQL to find the highest line number for the order number in question. If no line

exists, the line number will remain as zero.

Finally, I just increment whatever the line number has by 10 and so creates a new unique

line number.

In the generated program is implemented as a simple “/COPY” statement.

Pattern

For character fields only. Enter “!” for alphabetic positions and “&” for numeric positions.

Any other characters where you want a constant. For example, the Swedish car registration

numbers are in the format XXX999X – three alphabetic followed by three numeric and finally

(recently added) an additional alphabetic. This would be entered as “!!!&&&!”.

In Finland they have a similar system but with a hyphen in between and no additional

alphabetic. This would be “!!!-&&&”.

When all criteria have been entered
You will see the screen with the field list again. If you want to change anything select that

field with an “X” and do the changes.

 ZTEST User documentation

23

Creating the program
Press F10 and the program source is generated and compiled.

If there are errors?
You will get a message if the compile fails. If anything goes wrong, it most likely has to do

with your own code snippets. Check the compiler listing and you will be able to sort it out.

 ZTEST User documentation

24

What the code looks like

Declarations

Comments

A comment block is included that shows file name, number of generated records and some

more.

Control options:

We will be using a bunch of external procedures. Hence the binding directory. If you – in

included code wishes to use external procedures in modules or service programs include

these in the binding directory. Also, in this case edit the member CRANDOM (included with

the product) and add the procedure prototypes for included procedures.

File-spec:

Any file where we fetch fields gets a file spec. If the record name is the same as the file name

(typically for files created by SQL) the record format is renamed.

DS-spec:

The output file is declared as an external data structure. Note that the structure is now

qualified which means that all fields need to be addressed with “DsOut.” before the field

name.

/COPY

All prototypes and internal fields for the random generation procedures are in the copy

source.

 ZTEST User documentation

25

Record number field

For each linked file where data will be retrieved a variable is defined where the total number

of records in the file are retrieved for later use.

Initial processing

The starting point (“seed”) for the random generator is set.

All fields in the output format are initiated to defaults.

Journaling is bypassed for the output file.

Number of available records in (each) linked file is calculated.

Main processing

The program runs in a loop the number of counts you have specified.

For each field – other than the fields where default values are selected a small piece of code

including call to a random number routine is executed.

As an example, if we want the quantity to field to have a value between 7 and 18 the code

looks like this:

dsout.QTYORD=(Zrand * 18) +7;

For the calculated field (amount) the field is assigned whatever value we specified in our

code snippet:

dsout.QTYREM=

DsOut.QTYORD - DsOut.QTYDEL;

Any included source for a field would have to include the target field name but in this simple

case where the code snippet only resides on our screen input the program grabs the field

name automatically.

Finally

The data is inserted using an SQL insert.

 ZTEST User documentation

26

Resulting data

• FIELDSTS is a 1, 4 or 9.

• FIELDDRC has been fetched as the field CARMODEL in file CARS2 based on a

randomly calculated record number.

• FIELDTXT has been created as a random string of characters.

• FIELDQTY is a random number in a range.

• FIELDPRC is also a random number in a range.

• FIELDAMT is calculated as FIELDQTY times FIELDPRC.

• FIELDDTE is a random date in May of 2020.

• FIELDTME is a random time in the range of 6 AM to 4.30 PM.

• FIELDSTP has not been specified and so is set to the default value.

What if I have special requirements for fields – such as external procedures?
This is also easy to accomplish but requires a few extra steps.

1. The first means that you have to tweak the binding directory that is used by the

generator. This is named ZTDGEN and is located in the ZTEST library.

As installed it lists only one object – a module named ZRANDOM that has a lot of

functions for the random generator and for the various field types and rules.

If you have a module with a procedure that you will need or a service program just

add this to the binding directory. (WRKBNDDIRE is a useful command for this).

2. Next use the option for own code (the one that creates a “/COPY” in the generated

program and add code to call the procedure that you need. For example, if the

voucher numbers for financial transactions are created by calling a procedure

“Voucher” with transaction type as parameter your code would look like this:
Vchnbr=Voucher(TrnCde);

Easy so far?

3. Then when all field rules are entered press F10 to generate the source code and

compile it.

4. Then the compile will fail! Why?? The reason is that you will need to add the

procedure prototype in the definitions section of the program. Like
Dcl-pr Voucher Zoned(5);

 TrnCde Char(2);

End-pr;

 ZTEST User documentation

27

If you do manual changes to the generated program
This is totally fine but there may be at least one minor thing that you must remember:

The program is compiled as an embedded SQL program and for the /COPY statements that

happen to use SQL to work there is one compile parameter that needs to be set:

• RPGPPOPT (RPG Preprocessor options) should be set to “*LVL2.”

When you compile using the F10 key the package program takes care of this but your default

settings for the compile command may not be the same.

Other potential issues
The generator program does not verify that your copy source or your “Eval” source is

correct. Any errors there will only show up at compile time.

Final tip
Make use of the option to save the selections by field when creating even modestly

complicated generator programs. It is so easy to retrieve (and possibly alter) your previous

selections, and this can save you a little bit of time.

ZCMPGEN – Compare versions of files.

Important note!!:

For this function to work properly the files involved need to have unique keys defined by

some method. Be that SQL-indexes, “logical files” or (heaven forbid) in the DDS of the

“physical file”. This is what links the files together.

What is this used for?
This function is designed to provide help for the case when you have to compare two output

data sets and identify any differences.

It could be that you have two versions of the program that creates the data or that a range

of programs create it. It may also be the case that you have changes in the data definitions.

What it does:
After you have entered various criteria, the function creates SQL code and the following

database objects:

Merge file
The “merge file” contains all columns for the two files where the designated key fields

match.

 ZTEST User documentation

28

The file is created as a SQL view meaning that it does not use any significant amount of

storage. You can regard this as a compiled SQL statement that joins data from the “old” and

the “new” file in one record.

“Miss files”
These views (two of them) hold the records where there is no match for the key fields in the

other file.

The first one has the data where the key values exist in the “old” file but are missing in the

“new” file.

The second file has the data where the key values exist in the “new” file but are missing in

the “old” file.

Difference file
This last one contains data where specified (non-key) fields have different values in the “old”

versus the “new” files. If any field designated as a compare field differs the data is included.

Additionally, you can specify that the file has fields for the value of the difference. This can

be specified as an absolute value or if desired as a percentage.

What the function does not do:
There is no reporting tool included with the tool. As far as the compare function is

concerned it has done its job when the views are created.

You should be able to analyze the contents using commonly used query tools or with SQL

queries.

There are many reasons why this is so. One is that once you as an example know that certain

field values differ between file versions you have lots of paths to take when you need to take

the analysis to the next step. The tool gives you easy access to the data and that should give

you quite a lot of help.

What is the performance impact of using the tool?
The process of creating the SQL views is a very quick and easy one.

SQL views take (as stated before) very little space.

They also have no related access path that has to be maintained by the system so there is no

performance penalty for keeping these views on board.

Obviously when you access the data this uses some computer power depending on what you

are doing with it.

Accessing the views is handled by the systems database optimizer which does a pretty good

job of accessing data in the most efficient way possible.

 ZTEST User documentation

29

How to use the function

First

Make sure that your library list contains the library that has the objects for the function. By

default, this is the ZTEST library.

Enter the command parameters as follows:

Main screen
You do all your selections and definitions through options on the main screen.

There are five steps that need to be performed in sequence.

One is totally optional (second step where you select an access path) and one is only used

when you create the view that contains the data where field values do not match (fourth

step).

 ZTEST User documentation

30

When one step has been completed the select input field is blocked and the status changed

to completed. If you skip the access path step and select key fields manually the status for

option 2 will be “bypassed”.

When all is marked complete just exit the function with the F3 key.

Select output files and source.

You will have to define the name for the merge file. This is the view that combines all fields

from the old file and the new file where the keys you select later match.

The view for records in the old file that are missing in the new file, the one for records in the

new file that is missing in the old file and the view for data where keys match, but specific

values differ between the files can be omitted if you like.

The values for file library, source file and source library are saved when the files are created

so that your preferred defaults are retrieved next time you use the function.

For each view that you want created you need to provide:

• A valid name (10 characters).

This will be the name of the object as well as the source member that is generated.

• A library where the view shall be created. The default value here is *DTALIB which

means that the view is created in the same library as that where the “old file” is

located.

• A source file where you want the SQL code created. If the file does not exist it will be

created when the SQL source is generated.

• The library where the source file is placed. If you specify *CURLIB this will be your

own current library.

Do note that you will not have to re-create the files just because you have run a new test

with new data. The views created will always show the current situation!

 ZTEST User documentation

31

Example:

I have to “order files” named SAMPLEOLD and SAMPLENEW. If I want to create views for

these this is how I might enter the data:

I want the views in the same library as the data. I have a source file in library ZTEST named

ZSQLSRC and this is where I want the source to be generated.

 ZTEST User documentation

32

Select unique access path.
When you run this option, the purpose is to try and automate the selection of key fields.

The function looks for an access path (index) with attribute “unique” and displays all of

these.

Choose one and the key fields will be pre-selected in the next step.

You may skip this step and select the keys manually.

In my example there is one such key file as shown below.

Select by enter a “1” in the option field (under the “?”) and press enter.

 ZTEST User documentation

33

Select matching key fields.
That is define what fields in the two files that shall be used to join the records.

You have the following available choices:

• If you select an access path in the previous step the key fields from that access path

are already pre-entered with a “K” in the options field.

• You can select other keys by removing the “K” and enter a “K” on the line for a key

field that you prefer. Do note however that for the matching to work you need the

actual “proper” keys for the files – that what uniquely identifies a record.

• By default, the key field from the “old” file is set to match a field with the same name

in the “new” file. If you want the field to match another field just enter a “2” in the

options field and press enter. See “selecting other field to match” shortly!

If you have messed things up and want to start again just press F12 and start over!

When you have defined your key fields…

Press enters and the lines with “K” will be seen with an asterisk:

Press F10 when you are happy with your choices.

 ZTEST User documentation

34

Select fields to check for differences.
This again shows a list of all fields in the files.

The purpose here is to enter conditions that will be used for the view that shows record data

where non-key fields have different values in the two files.

All records in the merge file where the fields selected differ will be included.

In addition, those fields where you select “A” for absolute value or “P” for percent will cause

a calculated field to be included in the view.

Assume that I want to check that the same product is used, that line status is the same and

also for all the quantity fields I want to see the difference (if any) plus a percent difference

for the unit price.

This is what I would enter:

 ZTEST User documentation

35

When I press enter the screen will look like this:

The type column has been changed to reflect my selections.

If I want to restart and backout of any changes I have made I just press F12 and start again

with this option.

Selecting another field from “new” file (option 2)
Assume that I want to compare product to product text instead of product.

I enter a “2” in the options field:

I will see a window with fields to choose from. First fields of same type and length, next

fields of same type and finally all other fields.

Enter a “1” for the matching field to choose and press enter.

OR F12 to exit without changing anything.

When all the compare fields have been selected press F10 to save and exit.

 ZTEST User documentation

36

Generate source and compile.

At this stage there is nothing more to select.

You have two options:

• F3 will exit the function without saving anything.

• F10 will create the output SQL source and invoke the SQL function to create the

views.

When you see the main screen with the text “COMPLETED” for the generate option all

should be well.

 ZTEST User documentation

37

What has been created?
In this case (the file names here are my own!)

MRG0528 a view that combines ALL fields from both files where the keys match.

• The OLD fields have the name prefixed with “OLD_”

• The NEW fields have the prefix “NEW_”

The merge file is always created.

MNE0528 records in OLD missing in NEW

A simple view that shows all records that do not have a match in the other file.

MOL0528 records in NEW missing in OLD

A simple view that shows all records that do not have a match in the other file.

MDI0528 records with differences in selected new key fields

This has one record for every case where records where the keys match but one or more of

the selected non key fields have different values in the OLD file compared to the NEW file.

In addition – at the end – you will have the additional calculated fields that show differences

for numeric fields in absolute value or as a percent value.

These function fields have the prefix “DIFF_” for absolute value and “PCT_” for percent:

In this case quantity ordered and remaining have differences. Also, the unit price has a 2.3%

difference.

If the underlying data changes the data derived from the view is also changed.

 ZTEST User documentation

38

Scripted testing

What this does
This function gives you the possibility to:

• Record any actions that you do on a 5250 screen.

• Submit what you recorded to run in batch.

• Analyze what happened when the script ran and verify the results.

o Visual i.e., what screens were displayed.

o Database i.e., what updates were performed.

How this works
The function uses the TNAPI framework that is developed and provided by Albert York. This

is the part that makes 5250 functions run in batch.

On top of this is the step from the recorded macro to an executable script.

There is also the analysis layer that has been added to what the TNAPI provides.

 ZTEST User documentation

39

Required setup.
You will need to do a few simple steps before getting started.

The first is to create a folder on your desktop. This is the location where the recorded

macros will be stored after you finish recording.

The second task is to create a folder on the IFS. This is used in the conversion process as this

can read from the IFS but not from data on your desktop AND the macros cannot (currently)

be recorded to the IFS directly.

You will also need a source file QTNSCRIPT where the final scripts will be stored.

Obviously install of both the ZTEST and TNAPI libraries is required. See the package install

document on how to do that.

Use the admin function for scripts and enter the values you want:

 ZTEST User documentation

40

Recording a macro
Log on the IBM I and once logged in start recording a script.

Click the Icon to start recording:

Then select the PC folder where you decided to store the macros. Give the macro a name

and a description.

 ZTEST User documentation

41

A window like the one below may appear.

Just click “OK” to continue.

Stop recording macro.

Click the icon to end recording.

Transfer macro(-s) to IFS
Use the ACS function to access the IFS or use any other preferred method to copy the

recorded macro to the designated folder on the IFS.

Convert recorded macro to script file.
Run the menu option for macro conversion.

Why is this step necessary?

The format for the scrips that run through the RUNTNSCR function is quite different from the

macro format that is used by ACS which uses the host on demand format and has a lot of

extra information that is not used by the RUNTNSCR function.

For more details on the scripts see the documentation that comes with TNAPI!

What happens?

The program will show you all the macro files that are placed in the IFS folder you entered

during the setup.

Any files that do have a corresponding script is marked to indicate this.

 ZTEST User documentation

42

Check all macros that you want to have converted to scripts and hit enter.

If the script existed before it will be replaced.

A macro (beginning of it) looks something like this:

The ” <HAScript” section is used to fetch the description which is also used as the member.

The rest of the descriptions for each display is converted as keystrokes and function keys for

the script.

 ZTEST User documentation

43

Working with scripts
This is available from the ZTEST menu or by calling the program ZSCRIPT.

When you run ZSCRIPT the screen looks something like this:

The version number for the package is shown at the top.

At the top there are fields for submit user and password. This is used when you submit

scripts for execution. This will be the user profile that the script is run under.

Each script (which exists as a source member in the script file you have defined) is listed

together with information on when it was run last. When you check results (screen shots and

database changes) this is the instance that you will be looking at.

 ZTEST User documentation

44

Available options for the scripts

2 – Edit a script

This starts editing with SEU for the source member containing the script.

3 – Copy a script

You are prompted for a new name. The script is copied to a source member with this name.

4 – Delete a script

This removes the source member and the screen history for the script.

5 – View a script

This – again – starts seu but in browse mode.

S – Submit a script

Submitting a script calls a function that runs the script in a batch job.

This job has the same name as the script. The same job name is also found on the spool file

(script log file) that is created.

One thing to note is that the actual job that runs the interactive function has another name

since this a special interactive job that is spawned by the RUNTNSCR function. If you look at

the history log you will find this. This has to be so due to the mechanics of running 5250

screen processes in a batch environment.

D – View database changes

For this to work you must have the database tables affected by the function journaled to the

journal that you entered on the setup screen.

There is also another “catch” for viewing database changes for scripts that have been

submitted.

Although the running of a script is submitted to a job with the same name as the script this is

not the job where any program invoked by the script processor is running. This has to do

with the way the script processor communicates with the IBM I. When a socket

communication is initiated, this starts a secondary job that mainly looks like an interactive

job i.e., with the job name being that of a virtual device “QPADEVnnnn”. We cannot control

the name of that job. It is what it is.

 ZTEST User documentation

45

Because of this the journal entries retrieved are those based on:

• User (same as the user that ran the script)

• Time interval – entries from when the script job started until it ended.

IF the same user has other processes running at the exact same time and that performs

(journaled) database updates you might see more journal entries than you expected.

You will see a screen like the on below with which journal entries have been recorded.

Type equals “UB” for record before update, “UP” for record after update, “PT” for record

inserted and “DL” for deleted record.

To see details, enter “5” in the options field and press enter.

 ZTEST User documentation

46

You will see all columns in the related record image as one line.

Press F20 to pan to the right and F19 to pan to the left.

Exit by using the F3 key.

V – View screen data

When the script is run all screen data is captured in a log file SCRIPTLOG with one member

for each script name. The data from the most recent run is stored here.

Each “enter” moves you one screen forward. When you press F5 you see the script data that

was sent to the screen.

Function key F6 - Converting recorded macros to scripts.

This function has been temporarily disabled in release V1.000. Will be restored when V1.001

is released shortly.

ACS macros have a totally different format than TNAPI scripts. This is why the macros have

to undergo a conversion process before they can be used.

Step one for this is to load all your ACS macros into the IFS folder that you configured during

the setup process (ZSCRADMIN – option 4 on the ZTEST menu).

• Start the IFS option in ACS.

• Navigate to the folder you defined/created.

• Transfer the macro files (suffix .mac) from the desktop system to the folder.

Use Ctrl + U to start this function.

 ZTEST User documentation

47

When you have your macros safely in the IFS folder press F6

Enter a “2” before each macro that you want to have converted to a TNAPI script and press

enter.

Exit the function by using the F3 key.

 ZTEST User documentation

48

How TNAPI scripts are formatted
The scripts use two statements (there are some other options available, but these are the

essential ones:

DATA Statement
This is where all values are placed as well as certain control sequences for cursor placement,

field-exit, tabs and similar codes. The codes used here are those that do not cause data to be

sent to the program.

SEND Statement
This sends the data that was entered. Here we need to provide a code that tells the program

HOW the data is sent – that is if it should simulate the enter key, a function key or a page-

down/page_up key.

Available cursor control codes for the “DATA” statement

Code Meaning

%BS Backspace

%DN Down

%LF Left

%RT Right

%UP Up

%DL Delete

%DP Dup

%ER Erase input

%BT Back tab

%FE Field exit

%FP Field plus

%FM Field minus

%IN Insert

%NL New line

%TB Tab

Example: If you have a form and three values should be entered the DATA statement might

look something like this:

DATA First_value%TBSecond_value%TBThird_Value

Note that at this stage nothing is sent to the program!

 ZTEST User documentation

49

Available control codes for the SEND statement

Code Alternatively Meaning

ENTER Enter key

F1 F01 Function key 1

F2 F02 Function key 2

F3 F03 Function key 3

F4 F04 Function key 4

F5 F05 Function key 5

F6 F06 Function key 6

F7 F07 Function key 7

F8 F08 Function key 8

F9 F09 Function key 9

F10 Function key 10

F11 Function key 11

F12 Function key 12

F13 Function key 13

F14 Function key 14

F15 Function key 15

F16 Function key 16

F17 Function key 17

F18 Function key 18

F19 Function key 19

F20 Function key 20

F21 Function key 21

F22 Function key 22

F23 Function key 23

F24 Function key 24

PAGEDN Page down (roll up) key

PAGEUP Page up (roll down) key

ATTN Attention key

SYSREQ System request key

HOME Home key

PRINT Print key

RESET Reset function (unlock
keyboard)

REDRAW ?

HELP Help key

 ZTEST User documentation

50

Example:

Assume a case with data entry using DFU.

The goal is to use the UPDDTA command for a file and then change one value in the third

record in the file.

This would contain the following steps:

1. Send the UPDDTA command.

2. Send three page_down keys (to scroll to the correct record)

3. Send one (or more) tab keys to move cursor to the correct field.

4. Enter the data.

5. Send the ENTER key.

6. Exit DFU by sending the F3 key.

7. Send a signoff command.

This is what the script would look like (in full):

The file used here is the “PROD” file in a development library.

1. DATA upddta ztest_dev/prod

Calls the UpdDta function – when sent

2. SEND ENTER

Sends the command above

3. SEND PAGEDN

Scroll down one record in DFU.

4. SEND PAGEDN

Scroll down one record in DFU.

5. SEND PAGEDN

Scroll down one record in DFU.

6. DATA %TBLOVELY BLOKE

Position to the second field in the format by sending a tab-key. Followed by the text

“LOVELY BLOKE”

7. SEND ENTER

Send the above data.

8. SEND F3

Exit DFU by sending an F3 key.

9. SEND ENTER

Send one enter at end of DFU (this is where DFU shows number of changed/added

records)

10. DATA SIGNOFF

Add SIGNOFF command to screen.

 ZTEST User documentation

51

11. SEND ENTER

Finally send the signoff sequence.

Screen log when run:

… Intermediate screens omitted as well as second and third “<PAGEDN>

Note that the field “Product” was skipped over by sending the tab key – only PRODTXT has

been affected. IF %FE had been used instead of %TB the product number “103” would have

been blanked/zeroed out.

F3 key sent

Summary screen at DFU exit.

 ZTEST User documentation

52

This shows you

• That the script language (at least in its basic form) is quite straight forward and easy

to use.

• That you can actually both create and modify scripts manually by using whichever

editor you prefer.

• But for complex sequences you get helped quite a lot by using the record and convert

option.

 ZTEST User documentation

53

Updating the package

Finding the updates
On the download page for ZTEST there is a description on the latest changes.

In case there are changes just download and install the product library again.

